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Abstract—We introduce Graph-Structured Sum-Product ~ approaches to structured prediction place strict constraints
Networks (GraphSPNs), a probabilistic approach to structured  on the interactions between inferred variables to achieve
prediction for problems where dependencies between latent tractability [4] and require that the number of output la-

variables are expressed in terms of arbitrary, dynamic graphs. - L
While many approaches to structured prediction place strict tent variables be constant and related through a similar

constraints on the interactions between inferred variables, global structure [5]. This makes them either inapplicable or
many real-world problems can be only characterized using impractical in robotics settings and require compromising
complex graph structures of varying size, often contaminated on the structure complexity [6], introducing prior structural
with noise when obtained from real data. Here, we focus on knowledge [1] or making hard commitments about values
one such problem in the domain of robotics. We demonstrate f tic attribut 31 Th bl t uni i
how GraphSPNs can be used to bolster inference about se- 0 Seman ic attributes [3]. ese pro e_ms are no u_n'que 0
mantic, Conceptua| p|ace descriptions using noisy topo]ogica| robotics and often present themselves in other doma|n5, such
relations _discovered by a robot exploring large-scale of ce as computer vision [7].

spaces. Through experiments, we show that GraphSPNs consis- |n this paper, we present Graph-Structured Sum-Product
tently outperform the traditional approach based on undirected — Networks (GraphSPNSs), a general probabilistic framework
graphical models, successfully disambiguating information in f deli h-st ' tured dat ith | .
global semantic maps built from uncertain, noisy local evidence. L 'ng graph-struc ure- ata with- complex, '?O'sy
Further, we exploit the probabilistic nature of the model to dependencies between a varying number of latent variables.
infer marginal distributions over semantic descriptions of as Our framework builds on Sum-Product Networks (SPNs) [8],
yet unexplored places. a probabilistic deep architecture with solid theoretical foun-
dations [9]. SPNs can learn probabilistic models capable
. . ) o of representing context-speci ¢ independence directly from
It is essential for a mobile robot to maintain a represenyigh_gimensional data and perform fast, tractable inference

tation of spgtial knowledge, a framewo.rk that organizes thgn high-treewidth models. GraphSPNs learn template SPN
understanding of the environment. Mobile robots have accegsgels representing distributions over attributes of sub-
to information at both local and global scale. Therefore

o . . . : raphs of arbitrary complexity. Then, to perform inference
it is desirable for a representation to enable integration q%r a speci ¢, potentially expanding graph, they assemble a

knowledge across spatial scales and levels of abstractiﬂﬂxture model over multiple decompositions of the graph

with the help of discovered spatial relations. Topologica]Jnto sub-graphs, with each sub-graph modeled by an instan-
maps are an established framework for representing spaq'pc{tion of an appropriate template.

relations between local places that enables anchoring high-We apply GraphSPNs to the problem of modeling large-

level _conceptual information and easy access for a plannlr&ale’ global semantic maps with noisy topological spatial
algorithm. As a result, several semantic mapping approachggations puilt by robots exploring multiple of ce environ-
rely on topological gra_phs as part 9f their representatioH]ems_ We make no assumptions about the structure of
a_nd associate topological nodes with semantic place Fhe topological map that would simplify the inference over
tributes [1], [2]’.[3]' . semantic attributes. Our approach is capable of disambiguat-
In order to integrate the collected spatial knowledg&y,y \ncertain and noisy local information about semantic
resolve ambiguities, and make predictions about unobservegliy tes of places as well as inferring distributions over
places, such frameworks often employ structured predictiQf) o ntic attributes for yet unexplored places, for which local
algorlt_hms. Unfortunately, t.he relations discovered by a robQfijence is not available. We compare the performance of our
exploring a real-world environment tend to be complex ang, e with the traditional approach based on Probabilistic
noisy, resulting in dif cult inference problems. TOpOIOg'CaIGraphical Models assembled according to the structure of
maps are dynamic structures, growing as the robot explor9§e topological graph. We show that GraphSPNs signi cantly
its enviro.nment, and contajning a different numbe_r of nOdeéutperforms Markov Random Fields built from pairwise
and relations for every environment. At the same time, many, higher-order potentials relying on the same uncertain
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I. INTRODUCTION



inference in PGMs is generally intractable, with the excep- Mixture
tion of low treewidth models [4]. In practice, PGMs often 03
require approximate inference techniques with no guarantee components 4
of convergence, such as Loopy Belief Propagation (BP) [11],
when the graph structure involves loops (as in this work).
An increasing number of structure prediction approaches 02
utilize deep architectures (e.g. [7], [12] [7], [12]). Unfortu-
nately, many of the deep approaches are not probabilistic and ) ) i )
. Fig. 1: An simple SPN for a naive Bayes mixture moBeIX 1; X ), with
are mostly applicable to data of the same global structure aﬂ{?ee components over two binary variables. The bottom layer consists of
number of output labels as the training examples. indicators forX 1 andX 2. Weighted sum nodes, with weights attached to
Sum-Product Networks (SPNs) are a class of deep arfgputs, are marked with-, while product nodes are marked with
probabilistic architecture capable of performing tractable
inference on high-treewidth models. In [13], Relationalare guaranteed to be tractable and involve a polynomial
SPNs were proposed that model graph-based relational da@nber of sum and product operations, permitting exact
based on rst-order logic. This method models graphs witlnference.
potentially varying sizes by summarizing multiple variables As shown in Fig. 1, an SPN is a directed acyclic graph
with an aggregate statistic. In contrast, we directly modelomposed of weighted sum and product operations. The
each output variable associated with nodes of the graph, asdms can be seen as mixture models over subsets of vari-
construct an SPN structure speci ¢ to each graph instanceables, with weights representing mixture priors. Products can
There have been numerous attempts to employ structurbd viewed as combinations of features. SPNs can be de ned
prediction to modeling semantic maps with topological spa&or both continuous and discrete variables, with evidence
tial relations. [1] proposed Voronoi Random Fields (VRFs¥or categorical variables often specied in terms of binary
which are CRFs constructed according to a Voronoi graph exidicators.
tracted from an occupancy grid map. In [3], Markov Random Formally, following [8], we can de ne an SPN as follows:

Fields were used to model pairwise dependencies betweerDe nition 1: An SPN over variables<;:::; Xy is a
semantic categories of rooms according to a topologicaboted directed acyclic graph whose leaves are the indicators
map. The categorical variables were connected to Bayesi@\{;:::;X});:::;(XJ;:::;X{,) and whose internal nodes

Networks that reasoned about local environment featuresre sums and products. Each edgg ) emanating from a
forming a chain graph. This approach relied on a doosum nodei has a non-negative weight; . The value of a
detector to segment the environment into a topological gragitoduct node is the p,gpduct of the values of its children. The
with only one node per room. These approaches rely aralue of a sum node is ;, ¢y, iy Wi Vi, whereCh(i) are the
approximate inference using Loopy BP leading to problemshildren ofi andy; is the value of nod¢. The value of an
with convergence [1]. Moreover, in both cases, additionagdPNS[X;:::;Xy] is the value of its root.
prior knowledge or hard commitments about the semantics Not all architectures consisting of sums and products result
of some places were employed in order to obtain a clean a valid probability distribution. While a less constraining
and manageable topological graph structure. In contrast, gondition on validity has been derived in [8], a simpler
this work, we rely on a graph built primarily to supportcondition, which does not limit the power of the model is to
navigation and execution of actions by the robot. Suchuarantee that the SPN ¢®@mpleteand decomposabl¢9].
graph provides a better coverage, but results in more noisyDe nition 2: A sum-product network is completé all
structure. Furthermore, we make no hard commitments abachildren of the same sum node have the same scope.
the semantics of the places at time of structure creation andDe nition 3: A sum-product network is decomposalifie
defer such inference to the nal model. Our experimentso variable appears in more than one child of a product node.
show, that under such conditions, graphical models with The scope of a node is de ned as the set of variables that
pairwise or higher-order potentials deteriorate quickly. have indicators among the descendants of the node.

A valid SPN will compute unnormalized probability of
evidence expressed in terms of indicators. However, the
We begin by giving a brief introduction to SPNs. Forweights of each sum can be normalized, in which case the

Ill. PRELIMINARIES

details, the reader is referred to [9], [8]. Then, we describealue of the SPNS[X {;:::;X/,] is equal to the normalized
the topological mapping framework we used to build therobability P(Xq;:::; Xy ) of the distribution modeled by
topological graphs. the network.

Partial or missing evidence can be expressed by setting the
appropriate indicators tad. Inference is then accomplished

One of the primary limitations of probabilistic graphicalby an upwards pass which calculates the probability of the
models is the complexity of their partition function, oftenevidence and a downwards pass which obtains gradients for
requiring complex approximate inference in the presence chlculating marginals or MPE state of the missing evidence.
non-convex likelihood functions. In contrast, SPNs represeiithe latter can be obtained by replacing sum operations with
joint or conditional distributions with partition functions thatweighted max operations [9].

A. Sum-Product Networks



Parameters of an SPN can be learned generatively [8] or
discriminatively [14] using Expectation Maximization (EM)
or gradient descent. Additionally, several algorithms were
proposed for simultaneous learning of network parameters
and structure [15], [16]. In this work, we use a simple
structure learning technique [17] to build template SPNs
representing each sub-graph. We begin by initializing the
SPN with dense structure by recursively generating nodes
based on multiple random decompositions of the set of vari-
ables into multiple subsets until each subset is a singleton.
The resulting structure consists of products combining the
subsets in each decomposition and sums mixing different
decompositions at each level. Then, we employ hard EM to )
learn the model parameters, which was shown to work well ,"
for generative learning [17] and overcomes the diminishing
gradient problem. After parameter learning, the generated |
structure can be pruned by removing edges associated with ~ “~==Z_______/L}
weights close to zero.

(Y2, X,

B. Topological Graphs For latent oo
. . . variable 7 Ay "_ 1
GraphSPNs are applicable to arbitrary graphs. However, in of node 4 ER
this work, we apply them speci cally to topological graphs DL(X)) DL (X))

bilt by a m(-)b"e- robot exploring a Iarge-sc_ale enViron.menIEig 2: An instance GraphSPN modeling a simple 5-node graph (red) with
[18]. The prlmarlly_ purpose of our topological graph '_S tOvarilab.lein andY; associated with graph nodes. Solid lines illustrate one
support the behavior of the robot. As a result, nodes in th&composition of the graph based on two template sub-graphs and SPNs
graph represent places the robot can visit and the edg@§e” and blue), while dashed lines illustrate another decomposition.
represent navigability. The graph nodes are associated with
latent variables representing semantics and the edges can be
seen as spatial relations forming a global semantic mal lace, and guarantees suf cient coverage of the environment
Local evidence about the semantics of a place might J& promoting positions at a certain distartefrom existing
available and we assume that such evidence is inherenf§gces. Final location of a new placeholder is chosen through
uncertain and noisy. Additional nodes in the graph arMPE inference inP(EjG;E). An edge is then created to
created to represent exploration frontiers, possible places tfRPresent navigability. It connects the placeholder to an
robot has not yet visited, but can navigate to. We call sucBXisting place in the graph based on A* search directly over
nodes placeholders, and assume that the robot has not {ft& potential s. An example of such semantic-topological
obtained any evidence about their semantics. map is shown in Fig. 4.

The topological graph is assembled incrementally based
on dynamically expanding 2D occupancy map. The 2D IV. GRAPHSPNS
map is built from laser range data captured by the robot GraphSPNs learn a template model over arbitrary graph-
using a grid mapping approach based on Rao-Blackwellizesfructured data, with local evideneée; and latent variables
particle lters [19]. Placeholders are added at neighboringYi = fYi1; ;Yim g for each graph node or edge with
reachable, but unexplored locations and connected to existidlgpendencies between the latent variables expressed in terms
places. Then, once the robot performs an exploration actionf the graph structure. Then, amstance GraphSPMiistri-

a placeholder is converted into a place and local evidendwition P (X 1;Y1;:::; X n; YN ) is assembled for a specic
captured by the robot about the semantic place categorygsaph to perform inference.
anchored to the graph node. To this end, we de ne a s& of template sub-graphsnd

We formulate the problem of nding placeholder locationsassociate eackemplate sub-grapts 2 S with a separate
as sampling from a distribution that models location reletemplate SPNmodeling the distribution over variables;
vance and suitabilityQ'Speci cally, the distribution is speci edandY; corresponding to the nodes and edges oftémeplate
as: P(EjG;E) = % i s(EijG) ~(EijE); whereE; 2  sub-graph The structure and parameters of edemplate
f0; 1g represents the existence of a new place at locatid®PN can be learned directly from data obtained by decom-
i in the occupancy mapG is the occupancy grid, aneE  posing training graphs into sub-graphs corresponding .to
is the set of locations of all existing places. The potential Given a set of trainedemplate SPNsand a specic

s ensures that placeholders are located in areas that gmaph to be modeled, ainstance GraphSPNs assembled
safe and preferred for navigation (are within safe distancas illustrated in Fig. 2. First, the graph is decomposed
from obstacles, with the preference towards centrally locatedultiple times, each time differently, into sub-graphs using
places). The potential y models the neighborhood of a sub-graph templateS in descending order of the template



size (i.e. more complex templates have priority). The sub- NL D groundtutn Dincorrect

) ) 1 0.991 (+/-0.001) 0.0
graphs shquld not overlap in each decomposmon. and the 2 0913 (+-0.015) 0.085 (+/- 0.056)
correspondingtemplate SPNsshould cover all variables 3 0.720 (+/-0.040) 0.090 (+/- 0.061)
X ;Y in the model. This condition guarantees completeness 4 0.434 (+/-0.054) 0.092 (+/-0.062)
and decomposability resulting in a valigstance GraphSPN 5 0.316 (+/-0.030)  0.154 (+/-0.055)
For each decomposition and each sub-graph, we instantiate 6 0.154 (+-0.021) 0.217 (+/-0.074)
the correspondingemplate SPNesulting in multiple SPNs TABLE I: Noise levels used in our experiments.
sharing weights and structure. The instantiations for a single

graph decomposition are combined with a product node and 2ode templare. 1mods templare

the product nodes for all decompositions become children of
a root sum node realizing the complete mixture model.

In order to incorporate the latent variabMgs, we include O—O—Q
an intermediate layer of product nodes into ttenplate I et

. . . -node template -node template
SPNs As shown in Fig. 2, each such product node comblnel_s _ . .
bit distributiorD ¥ (X ith indicat Fig. 3: Sub-graph templates used in our experiments. Dashed edges are

an arpitrary aistributio ij ( |) with an indicator Yij :cjk ignored when matching the template.

for a specic valuec}< of Y; . The template SPNouilt on

top of the product nodes can be learned from data and wred i isv tonological h. Probabilistic pl
the distributionsDi‘Jf (Xj) can be arbitrary, potentially also captured In a noisy fopological graph. Frobabilistic place

realized with an SPN with data-driven structure classi cation algorithms, such as the SPN-based approach
In our experiments, we assumed only one. latent varip [17] associate decisions based on local observations with

able (semantic place category) per graph nodd, with probability estimates. However, the certainty of a decision
val(,)) = fcbiii:: dg, and we denedDX(X ) ’for q can be low or the decision can be incorrect. In order to
i - gy ) i i

single hypothetical binary observatiapn, which we assumed measure hO\.N sensitive the eyaluated approaches are tO.SUCh
to be observed: ( noise, we simulate I_oca! ewdepce at;ached to topolog|(_:al
graph nodes by adding increasing noise to groundtruth in-
1 K % = (1) formation.
i b A To this end, for each nodein each topological graph, we

Such simpli cation allows us to thoroughly evaluate Graph_'generated a local evidence distribution with valRe; =

SPNs for _the prqblem_of Iearning_ topol_ogical semantick. x. = Xi) = X For each graph, we rst randomly
maps by directly simulating hypothetical evidence about thggjected 209 of all nodes for which the most likely local
semantic category of varying uncertainty and under varag it should be incorrect. For those, we selected a random
ous noise conditions. Furthermore, it allows us to COMPaiG qrect class to be associated with the highest probability
GraphSPNs with Markov Random Fields using the salr(}he value. Then, we randomized the valD@correct , Which is a

as the value of local potentials, i.e;j(Y; = &) = k. difference between the highest probability and the probability
The proposed approach naturally extends to the case Whgjine groundtruth class, from a uniform distribution in a
a more pomplex distribution is used to model semantic pla‘i%nge depending on the noise level. For the remaining 80%
categories based on robot observations, such as the SFfilyoqes we ensured that the groundtruth class is associated

based approach presented in [17]. Note, that we still learn théy the highest probability. However, we simulated uncer-
structure of theemplate SPN&uilt on top of distributions tainty by randomizing the valu® groundgrutn , Which is a

DI(Xi). difference between the probability of the groundtruth class
and the second highest probability. With these constraints,
we used random values for the remaining likelihoods and
A. Dataset made sure that each distribution is normalized. Intuitively,
The semantic maps with topological relations used ifPWer Dgroundgruth ~ indicates higher uncertainty and higher
our experiments were obtained by deploying the topologic&incorrect  indicates stronger noise. The statistics of the
mapping on sequences of laser range data and odomeYAjues 0fDincorrect @NdDgroundarun ~ for the nal evidence
captured by a mobile robot exploring multiple large-scal@t different noise levels are shown in Tab. I.
environments [20]. The dataset contains 99 sequences, and .
as a result 99 topological graphs, captured on 11 oors of - Leaming GraphSPNs
buildings in different cities. We identi ed 10 semantic place We learned GraphSPNs from a simple setsab-graph
classes that are common for all buildings (e.g. a corridor, templatesshown in Fig. 3, matching from 1 to 5 nodes
doorway, a 1-person of ce, see Fig. 4 for a complete list) andnd simple edge con gurations. We assumed that each node
annotated each topological graph node with its groundtruil associated with a single latent variabfe representing
class. the semantic place class. For each template with at least
Our goal in this work is to evaluate the ability of Graph-2 nodes, we learned template SPNof specic structure
SPNs to disambiguate semantic place classes despite naggyd parameters from sub-graph examples in the training set
and uncertain local evidence by exploiting spatial relationsn a supervised fashionY{ was set to the groundtruth).

k Xi = X;
DE(X)= ! o

V. EXPERIMENTAL PROCEDURE



Each training graph was partitioned in 10 different ways
to obtain sub-graphs. For a single-node template we simply

assumed a uniform SPN. During testing, we builtitretance

GraphSPNbased on 5 different graph decompositions (see
Fig. 4). In our experiments, we always learned GraphSPN
from all graphs from two buildings in the dataset and
tested on graphs with different evidence noise levels from
the remaining building. GraphSPNs are implemented using

LibSPN [21].

C. Constructing Markov Random Fields

We compared GraphSPNs to a traditional approach based?

on MRFs structured according to the represented graph.

MRF was constructed from two types of potentials: potential

i(Yi =
potentials modeling latent variable dependencies. For

Ck): k

latter, we tried two models: using pairwise potentials for 2
each pair of variables associated with connected nodes or ,
de ned over three variables for three connected nodes in 5
any con guration. In each case, the potentials were obtained 6

¢ used to provide local evidence, and ~NL

GraphSPN

NL Freiburg

Saarhrcken

Stockholm

96.13%(+/-2.41)
96.63%(+/-2.39)
92.45%(+/-2.43)
91.88%(+/-2.76)
90.13%(+/-3.47)
80.83%(+/-5.21)

OO WN P

95.45%(+/-3.05)
96.37%(+/-3.03)
93.43%(+/-2.85)
92.91%(+/-2.72)
90.12%(+/-3.56)
80.08%(+/-3.95)

93.98%(+/-1.90)
94.01%(+/-2.12)
92.04%(+/-2.57)
86.31%(+/-2.06)
83.519%(+/-3.13)
69.49%(+/-5.69)

MRF-2

Freiburg

Saarhicken

Stockholm

1 91.54%(+/-6.89)
2 78.37%(+/-10.03)
3 59.919%(+/-12.99)
44,17%(+/-10.54)
44.74%(+/-8.92)

82.32%(+/-15.74)
76.15%(+/-16.63)
56.05%(+/-17.10)
50.77%(+/-17.35)
47.09%(+/-14.41)

72.71%(+/-13.42)
53.09%(+/-10.22)
28.74%(+/-4.89)

24.849%(+/-5.04)

23.20%(+/-2.90)

Theg 44.30(+/-10.53)  50.07%(+/-15.19)  22.98%(+/-4.42)
MRF-3
Freiburg Saarhicken Stockholm

the T 45.27%(+/-7.43)
48.70%(+/-7.30)
43.27%(+/-8.75)
47.24%(+/-9.81)
45.23%(+/-9.98)

47.80%(+/-10.37)

50.61%(+/-15.03)
49.50%(+/-15.23)
55.47%(+/-21.02)
49.18%(+/-12.27)
49.76%(+/-17.81)
51.85%(+/-17.54)

28.65%(+/-4.90)
26.58%(+/-3.75)
26.17%(+/-5.13)
24.18%(+/-4.47)
25.48%(+/-5.34)
25.25%(+/-5.19)

by generating co-occurrence statistics of variable values ifAgLE I1: Semantic place classi cation accuracy for all models and test
the training graphs used for learning GraphSPNs. Inferenobeildings, and at different noise levels.

in the MRF was performed using Loopy BP implemented
the libDAI library [22].

VI. EXPERIMENTAL RESULTS
We performed several experiments comparing the lear

GraphSPN model to the MRF models with pairwise po-—r
tentials (marked as MRF-2) and three-variable potentials—2
(marked as MRF-3). First, we tasked all models with disam-_5

in
GraphSPN
NL Freiburg Saarhicken Stockholm
2 67.58%(+/-10.42)  78.15%(+/-9.95) 67.57%(+/-11.11)
5 40.59%(+/-12.22)  55.18%(+/-19.67)  37.56%(+/-10.44)
ned MRF-2
Freiburg Saarhicken Stockholm

28.32%(+/-7.53)
24.23%(+/-11.40)

39.85%(+/-19.42)
30.58%(+/-5.57)

12.44%(+/-3.46)
10.04%(+/-2.59)

biguating noisy local evidence about semantic place class for

places visited by the robot. For each topological graph in the NL

test set, we performed marginal inferehckased on which
we selected the nal classi cation resufirgmax P (Y; =
KjX = x).

MRF-3

Freiburg

Saarhicken

Stockholm

28.71%(+/-5.43)
18.029%(+/-7.49)

31.94%(+/-5.26)
28.86%(+/-6.16)

10.11%(+/-0.51)
8.96%(+/-1.19)

TABLE IlI: Accuracy of semantic class inference for placeholders without

The percentage of correctly classi ed nodes in the grapﬁ;al evidence, for all models and test buildings, and at two representative

ise levels.

averaged over all test graphs is shown in Tab. Il and a

visualization of results for a single graph together wi

th

the decompositions used to build tirestance GraphSPN \oq 115 (accuracy greater than 80%) despite substantial noise

is shown in Fig. 4. We evaluated all assignments of thg, ncertainty. With substantial noise, approximate Loopy
three buildings into training and test sets as well as dlf“ferergP inference for MRF converges to a solution consisting
noise levels listed in Tab. |. Each test set consisted of§

X i : rimarily of the dominant class (the corridor). At the same
topological maps, each with 3 random sets of noisy locgle “\ve see that using higher-order potentials with MRF
evidence resulting in 15 different test graphs. Since th§ctua|ly hurts performance
local evidence for 20% of nodes in each graph indicates In the second experimént we tasked the models with

an incorrect cletss as the most likely one, only aCCura(Wlferring marginal distributions over the semantic classes
greater than 80% demonstrates that the model was able0 places not yet visited by the robot (placeholders) for

recover from the noise using learned spatial relations. LOWWhich local evidence is unavailable. We used the same

accuracy suggests tha}t the incorrect evidence. was T[OO Stmé]agtup as in the previous experiment, with local evidence for
?hr that thet_corlrect e\fndenlce was too uncertain to in uenC'Explored places including noise and uncertainty. Examples
Zse:ngn |cr<]:ass? a place. din Tab. II h of such marginal distributions are shown in Fig. 5, while
Ana yzn(l/lgletFe pefr ormanC(ﬁ reﬁortethln a .I'ttylwe see tafe classi cation accuracy when considering the most likely
bairwise periorms well when there 1S fitle NoISe g 5q js reported in Tab. Ill. Again, GraphSPN signi cantly
the_ evidence, however it de_:terlorates quickly with 'ncreasmgutperformed the MRF for this inference task. If we analyze
noise levels. At the same time, GraphSPN generating rObU[ﬁre marginal distributions for three representative placehold-

1We experimented with MPE inference over all latent variables achievin&rS shown in Fig. 5, we see that GraphSPN IS con _dent about
inferior results with all models. the correct class for the two placeholders for which nearby



Fig. 4: Visualization of the results for a graph from Freiburg at noise level 4. The top row shows: the semantic map with groundtruth semantic place
classes; the 20% of nodes for which the most likely evidence indicates an incorrect class (black nodes); the semantic classes inferred by the GraphSPN and
the MRF-2. The place classes are: 1-person of ce (1PO), 2-person of ce (2PO), bathroom (BA), corridor (CR), doorway (DW), kitchen (KT), laboratory
(LAB), large of ce (LO), meeting room (MR), utility room (UT). The bottom row illustrates the 5 decompositions used when assemblinstahee
GraphSPN(different colors indicate different sub-graph templates applied).

allowing for making inferences about graphs of different
global structure. While existing works applied SPNs to data
organized as xed-size grids or sequences, this paper presents
a novel attempt at deploying SPNs on arbitrary graphs of
varying size. Based on GraphSPNs, we proposed a method
for learning topological spatial relations in semantic maps
constructed by a mobile robot. Our method is robust to
noise and uncertainty inherent in real-world problems where
information about the environment is captured with robot
sensors. Our framework is universal and compatible with
any distributions de ned over local evidence. However, it
Fig. 5: Visualization of results for the experiment involving placeholder\'J,S particularly well suited for mtegratlon. Wlth other SPN-
without local evidence, at noise level 2. Left, bottom: the semantic mapased models. In the future, by combining a GraphSPN
with groundtruth semantic place classes (including for placeholders). Lefiearned over semantic maps with the generative place model

top: the 20% of nodes for which the most likely evidence indicates a : . . . .
incorrect class (black) and placeholders with no evidence (gray). Righ%mposed in [17], we intend to achieve a uni ed, deep, and hi

inferred marginal distributions over semantic classes of placeholders (pRfarchical representation of spatial knowledge spanning from
charts). local sensory observations to global conceptual descriptions.

node with incorrect label

placeholder

o
[

nodes provide correct (albeit uncertain) evidence. For the
placeholder connected to nodes for which evidence indicates
an incorrect class the marginal distribution is almost uniform.
This is an indication of the ability of GraphSPN to generate
useful con dence signal in presence of noisy evidence.

VIl. CONCLUSIONS

We presented GraphSPNs, a probabilistic deep model
for graph-structured data that learns a template distribution
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